Vectors - Questions

June 2017 Mathematics Advanced Paper 1: Pure Mathematics 4

1.

6. With respect to a fixed origin O, the lines l_1 and l_2 are given by the equations

$$l_1: \mathbf{r} = \begin{pmatrix} 4 \\ 28 \\ 4 \end{pmatrix} + \lambda \begin{pmatrix} -1 \\ -5 \\ 1 \end{pmatrix}, \qquad l_2: \mathbf{r} = \begin{pmatrix} 5 \\ 3 \\ 1 \end{pmatrix} + \mu \begin{pmatrix} 3 \\ 0 \\ -4 \end{pmatrix}$$

where λ and μ are scalar parameters.

The lines l_1 and l_2 intersect at the point X.

(a) Find the coordinates of the point X.

(3)

(b) Find the size of the acute angle between l₁ and l₂, giving your answer in degrees to 2 decimal places.

(3)

The point A lies on l_1 and has position vector $\begin{pmatrix} 2\\18\\6 \end{pmatrix}$

(c) Find the distance AX, giving your answer as a surd in its simplest form.

(2)

The point Y lies on l_2 . Given that the vector \overrightarrow{YA} is perpendicular to the line l_1

(d) find the distance YA, giving your answer to one decimal place.

(2)

The point B lies on l_1 where $|\overrightarrow{AX}| = 2|\overrightarrow{AB}|$.

(e) Find the two possible position vectors of B.

(3)

2.

8. With respect to a fixed origin O, the line l_1 is given by the equation

$$\mathbf{r} = \begin{pmatrix} 8 \\ 1 \\ -3 \end{pmatrix} + \mu \begin{pmatrix} -5 \\ 4 \\ 3 \end{pmatrix},$$

where μ is a scalar parameter.

The point A lies on l_1 where $\mu = 1$.

(a) Find the coordinates of A.

(1)

The point P has position vector $\begin{bmatrix} 1 \\ 5 \\ 2 \end{bmatrix}$.

The line l_2 passes through the point P and is parallel to the line l_1 .

(b) Write down a vector equation for the line l₂.

(2)

(c) Find the exact value of the distance AP. Give your answer in the form $k\sqrt{2}$, where k is a constant to be determined.

(2)

The acute angle between AP and l_2 is θ .

(d) Find the value of cos θ.

(3)

A point E lies on the line l_2 . Given that AP = PE,

(e) find the area of triangle APE,

(2)

(f) find the coordinates of the two possible positions of E.

(5)

June 2015 Mathematics Advanced Paper 1: Pure Mathematics 4

3.

4. With respect to a fixed origin O, the lines l_1 and l_2 are given by the equations

$$l_1: \mathbf{r} = \begin{pmatrix} 5 \\ -3 \\ p \end{pmatrix} + \lambda \begin{pmatrix} 0 \\ 1 \\ -3 \end{pmatrix}, \quad l_2: \mathbf{r} = \begin{pmatrix} 8 \\ 5 \\ -2 \end{pmatrix} + \mu \begin{pmatrix} 3 \\ 4 \\ -5 \end{pmatrix},$$

where λ and μ are scalar parameters and p is a constant.

The lines l_1 and l_2 intersect at the point A.

(a) Find the coordinates of A.

(2)

(b) Find the value of the constant p.

(3)

(c) Find the acute angle between l₁ and l₂, giving your answer in degrees to 2 decimal places.

(3)

The point B lies on l_2 where $\mu = 1$.

(d) Find the shortest distance from the point B to the line l1, giving your answer to 3 significant figures.

(3)

June 2014 Mathematics Advanced Paper 1: Pure Mathematics 4

4.

Relative to a fixed origin O, the point A has position vector $\begin{pmatrix} -2 \\ 4 \\ 7 \end{pmatrix}$ 8. and the point *B* has position vector $\begin{pmatrix} -1\\3\\8 \end{pmatrix}$.

The line l_1 passes through the points A and B.

The line l_1 passes through the points A and B.

(a) Find the vector \overrightarrow{AB} .

(2)

(b) Hence find a vector equation for the line l₁.

(1)

The point P has position vector $\begin{pmatrix} 0 \\ 2 \\ 3 \end{pmatrix}$.

Given that angle PBA is θ ,

(c) show that $\cos \theta = \frac{1}{3}$.

(3)

The line l_2 passes through the point P and is parallel to the line l_1 .

(d) Find a vector equation for the line l2.

(2)

The points C and D both lie on the line l_2 .

Given that AB = PC = DP and the x coordinate of C is positive,

(e) find the coordinates of C and the coordinates of D.

(3)

(f) find the exact area of the trapezium ABCD, giving your answer as a simplified surd.

(4)

June 2013 Mathematics Advanced Paper 1: Pure Mathematics 4

5.

8. With respect to a fixed origin O, the line l has equation

$$\mathbf{r} = \begin{pmatrix} 13 \\ 8 \\ 1 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ 2 \\ -1 \end{pmatrix}, \text{ where } \lambda \text{ is a scalar parameter.}$$

The point A lies on l and has coordinates (3, -2, 6).

The point P has position vector $(-p\mathbf{i} + 2p\mathbf{k})$ relative to O, where p is a constant.

Given that vector \overrightarrow{PA} is perpendicular to l,

(a) find the value of p.

(4)

Given also that B is a point on l such that $< BPA = 45^{\circ}$,

(b) find the coordinates of the two possible positions of B.

(5)

June 2012 Mathematics Advanced Paper 1: Pure Mathematics 4

6.

8. Relative to a fixed origin O, the point A has position vector $(10\mathbf{i} + 2\mathbf{j} + 3\mathbf{k})$, and the point B has position vector $(8\mathbf{i} + 3\mathbf{j} + 4\mathbf{k})$.

The line l passes through the points A and B.

(a) Find the vector \overrightarrow{AB} .

(2)

(b) Find a vector equation for the line l.

(2)

The point C has position vector $(3\mathbf{i} + 12\mathbf{j} + 3\mathbf{k})$.

The point P lies on l. Given that the vector \overrightarrow{CP} is perpendicular to l,

(c) find the position vector of the point P.

(6)

7.

Relative to a fixed origin O, the point A has position vector (2i - j + 5k), the point B has position vector (5i + 2j + 10k), and the point D has position vector (-i + j + 4k).

The line l passes through the points A and B.

(a) Find the vector \overrightarrow{AB} .

(b) Find a vector equation for the line l.

(c) Show that the size of the angle BAD is 109°, to the nearest degree.

(4)

The points A, B and D, together with a point C, are the vertices of the parallelogram ABCD, where $\overline{AB} = \overline{DC}$.

(d) Find the position vector of C.

(2)

(e) Find the area of the parallelogram ABCD, giving your answer to 3 significant figures.

(3)

(2)

(f) Find the shortest distance from the point D to the line l, giving your answer to 3 significant figures.

(2)

June 2011 Mathematics Advanced Paper 1: Pure Mathematics 4

8.

With respect to a fixed origin O, the lines l1 and l2 are given by the equations

$$l_1: \mathbf{r} = \begin{pmatrix} 6 \\ -3 \\ -2 \end{pmatrix} + \lambda \begin{pmatrix} -1 \\ 2 \\ 3 \end{pmatrix}, \qquad l_2: \mathbf{r} = \begin{pmatrix} -5 \\ 15 \\ 3 \end{pmatrix} + \mu \begin{pmatrix} 2 \\ -3 \\ 1 \end{pmatrix},$$

where μ and λ are scalar parameters.

- (a) Show that l₁ and l₂ meet and find the position vector of their point of intersection A.
- (b) Find, to the nearest 0.1°, the acute angle between l₁ and l₂.
 (3)

The point B has position vector $\begin{pmatrix} 5 \\ -1 \\ 1 \end{pmatrix}$.

- (c) Show that B lies on l1.
- (d) Find the shortest distance from B to the line l2, giving your answer to 3 significant figures.
 (4)

Jan 2011 Mathematics Advanced Paper 1: Pure Mathematics 4

9.

- 4. Relative to a fixed origin O, the point A has position vector $\mathbf{i} 3\mathbf{j} + 2\mathbf{k}$ and the point B has position vector $-2\mathbf{i} + 2\mathbf{j} \mathbf{k}$. The points A and B lie on a straight line l.
 - (a) Find \overrightarrow{AB} . (2)
 - (b) Find a vector equation of l.

(2)

(6)

(1)

The point C has position vector $2\mathbf{i} + p\mathbf{j} - 4\mathbf{k}$ with respect to O, where p is a constant.

Given that AC is perpendicular to l, find

- (c) the value of p,

 (4)
- (d) the distance AC.

(2)

10.

7. The line l_1 has equation $\mathbf{r} = \begin{pmatrix} 2 \\ 3 \\ -4 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$, where λ is a scalar parameter.

The line l_2 has equation $\mathbf{r} = \begin{pmatrix} 0 \\ 9 \\ -3 \end{pmatrix} + \mu \begin{pmatrix} 5 \\ 0 \\ 2 \end{pmatrix}$, where μ is a scalar parameter.

Given that l_1 and l_2 meet at the point C, find

(a) the coordinates of C.

(3)

The point A is the point on l_1 where $\lambda = 0$ and the point B is the point on l_2 where $\mu = -1$.

- (b) Find the size of the angle ACB. Give your answer in degrees to 2 decimal places.
- (4)

(c) Hence, or otherwise, find the area of the triangle ABC.

(5)

Jan 2010 Mathematics Advanced Paper 1: Pure Mathematics 4

11.

The line l₁ has vector equation

$$\mathbf{r} = \begin{pmatrix} -6 \\ 4 \\ -1 \end{pmatrix} + \lambda \begin{pmatrix} 4 \\ -1 \\ 3 \end{pmatrix}$$

and the line l_2 has vector equation

$$\mathbf{r} = \begin{pmatrix} -6 \\ 4 \\ -1 \end{pmatrix} + \mu \begin{pmatrix} 3 \\ -4 \\ 1 \end{pmatrix}$$

where λ and μ are parameters.

The lines l_1 and l_2 intersect at the point A and the acute angle between l_1 and l_2 is θ .

(a) Write down the coordinates of A.

(1)

(b) Find the value of cos θ.

(3)

The point X lies on l_1 where $\lambda = 4$.

(c) Find the coordinates of X.

(1)

(d) Find the vector \overrightarrow{AX} .

(2)

(e) Hence, or otherwise, show that $|A\vec{X}| = 4\sqrt{26}$.

(2)

The point Y lies on l_2 . Given that the vector \overrightarrow{YX} is perpendicular to l_1 ,

(f) find the length of AY, giving your answer to 3 significant figures.

(3)